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Concurrent Multiscale Modeling of Embedded Nanomechanics

Robert E. Rudd
Lawrence Livermore National Laboratory
Condensed Matter Physics, L-415
Livermore, CA 94551 USA

ABSTRACT

We discuss concurrent multiscale simulations of dynamic and temperature-dependent
processes found in nanomechanical systems coupled to larger scale surroundings. We focus
on the behavior of sub-micron Micro-Electro-Mechanical Systems (MEMS), especially
micro-resonators. The coupling of length scales methodology we have developed for MEMS
employs an atomistic description of small but key regions of the system, consisting of
millions of atoms, coupled concurrently to a finite element model of the periphery. The
result is a model that accurately describes the behavior of the mechanical components of
MEMS down to the atomic scale. This paper reviews some of the general issues involved in
concurrent multiscale simulation, extends the methodology to metallic systems and
describes how it has been used to identify atomistic effects in sub-micron resonators.

INTRODUCTION

The mechanics and mechanical dynamics of nanoscale systems is often very different
from their macroscopic counterparts [1]. Large enough systems behave as if they were
composed of continuous media. Whether a particular system is large enough depends on
how its size compares to the largest microscopic features of the material. Microstructure
matters, or at least it can matter if the length scale of the microstructure is comparable to
macroscopic length scales, such as those set by strain gradients. In pure single crystals,
materials already begin to appear continuous in many ways at the length scale of tens of
lattice spacings. Nevertheless, at sufficiently small length scales the fact that the material
is composed of atoms and is not a continuous medium will become apparent. This effect is
one reason that mechanics at the nanoscale is not simply macroscopic mechanics reduced
in size. Nanomechanics is a separate, and as yet only vaguely understood, field.

Another distinction of nanomechanics is the fact that nanoscale systems often have a
large surface area-to-volume ratio. In general, this ratio grows as the size of a system is
reduced, and the emergence of surface effects in sub-micron systems has become a
recurrent theme in nanoscience. For example, surface effects have a large impact on the
structure and morphology of quantum dots [2].

In this Article, we examine some of the new phenomena of nanomechanics based on
our computations and in light of recent experimental results from other groups. We also
describe new computational tools we have developed in order to compute nanomechanical
effects. Of particular interest to us are nanomechanical systems that are strongly coupled
to their surroundings, which are typically micron scale or larger. The nanoscale system
may be on the surface of a substrate to which it is coupled, or it may be completely
surrounded by material. This particular kind of multiscale system, whether on the surface



Figure 1: Three dimensional model of the microresonator in its fully deflected state. The
geometry is modeled on a device fabricated by Roukes and coworkers [4].

or in the bulk, is what we term embedded nanomechanics. It is a situation that is arising
increasingly in systems under study.

The growing interest in the behavior of materials in the sub-micron and nanometer
regimes has been sparked by the rapidly expanding set of tools available for fabrication and
characterization at these length scales and the enormous potential for new devices and
applications that is beginning to be realized. For example, resonators and filters for
gigahertz communications applications are now being developed by fabrication of
oscillators directly on the semiconductor wafer that contains the control and processing
circuitry [3]. Moving parts on computer chips such as this form the basis of the technology
of Micro-Electro-Mechanical Systems (MEMS). The extraordinary feature of the gigahertz
resonators is that the width of the oscillating semiconductor bar is only tens of nanometers
[4-6]; i.e. a device on the order of one hundred atoms across (see Fig. 1). These devices are
fabricated by electron beam lithography, one of the emergent fabrication techniques.
Another example is the semiconductor islands that form in a variety of heteroepitaxial
systems, and may be used in solid state quantum dot applications [7]. These structures too
are on the order of one hundred atoms across, but in this case they form by self-assembly in
a deposition process such as chemical vapor deposition (CVD) or physical vapor deposition
(PVD). They have been characterized by photoluminescence and atomic force microscopy
(AFM), in addition to other forms of scanning probe microscopy [2]. Other examples can
be found in fields as diverse as dynamic fracture, where nanoscale voids grow and interact
through long range deformations to form the fracture surface [8], and biomechanics, where
nanoscale AFM tips induce both nanoscale and micron scale deformations of living cells [9].

Nanoscale and sub-micron systems pose an exciting challenge to modeling for several
reasons. Firstly, the existing complement of experimental tools for characterization of these
systems can offer only an incomplete picture of the behavior of the material. Often the
phenomena of interest are only partially characterized by the available tools, and modeling
can fill out this picture. We discuss below how this is being done to understand the



nanoscale dissipation processes that determine the quality of sub-micron resonators.
Secondly, the length scale is small enough that it is often possible to develop models of
nanoscale systems from first principles. By limiting the empirical input into the model, the
model become more robust in principle and it gains reliability across a broader range of
systems. This is especially important due to the limitations of experimental
characterization. Finally, while devices such as the gigahertz resonator are based on the
geometry of larger devices, systems which are well understood and described using
conventional engineering models, new physics may be encountered in the process of
miniaturization which modifies or even invalidates the design rules devised at the larger
scales.

It is well known that new physics may enter upon miniaturization that sets limits on
the way the device can be fabricated, such as diffraction limits in lithography, but there
may also be new physics that causes the operational behavior of the device to depart from
expectations. Until this physics is understood it forms an obstacle to device development
and optimization. The regions of the system in which atomistic effects are important are
usually limited to, or typified by, a very small part of the overall system. Outside this
region conventional continuum theory works well. This suggests that it would be possible
to manage the expense of a first principles technique since it would be used in an extremely
small volume. In the systems we consider, what we mean by a first principles technique is
an atomistic simulation using an empirical potential, although in other contexts it could be
a more fundamental model. Empirical potentials allow the study of millions of atoms, in
some cases even thousands of millions, and this encompasses the most important region of
many sub-micron devices, such as the oscillating bar of a micro-resonator; however, it alone
does not give a complete description of the behavior of the system. The difficulty is that
the small scale region interacts with its surroundings. For example, long range strain fields
may extend out from the small-scale region into the large-scale region. This dynamic
coupling must be described in order to have a robust model.

The methodology we have used is to embed atomistics into a finite element model of
continuum mechanics. The two traditionally distinct techniques are coupled together and
run concurrently. This captures both the small scale (atomistic) physics and the large scale
(continuum) physics. It is an example of concurrent multiscale modeling [10], and this
computational approach is well suited to the study of embedded nanomechanics.

In this Article, we describe how the methodology is implemented. A more complete
description has been given elsewhere [10], but there have been some recent advances that
we describe. In particular, we have extended the technique to work for many-body
empirical potentials such as the Embedded Atom Model [11,12] and the Finnis-Sinclair
Model [13]. We then describe some results from our studies of MEMS systems, and how
they are related to several important new experiments.

THEORY

Fig. 1 shows the microresonator geometry we have used based on a device fabricated
by the Roukes group [4]. In the actual device the bar in the middle and the
diamond-shaped tabs at either end have been released from the underlying substrate by
etching. Only the four corner tabs are anchored to the substrate. The entire device has
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Figure 2: The decomposition of the microresonator system into molecular dynamics (MD)
and finite element (FE) or coarse-grained molecular dynamics (CGMD) regions. A narrow
handshaking region is used to couple the FE and MD regions; in the case of CGMD, the
cross-over to atomistics for atomic-sized cells is completely smooth and no handshaking
region is required. The multiscale technique directs the computer power to the important
small-scale regions of the system. The basic implementation of this multiscale methodology
on parallel supercomputer architectures is described in detail in Ref. [10].

been fabricated from a single crystal.
Two regions are indicated. The oscillating bar in the middle is the region where

atomistic processes are to be studied. The peripheral regions are there in our simulation to
support the strain fields that extend from the bar. They are continuous in character. The
multiscale methodology uses molecular dynamics (MD), a classical atomistic methodology
[14], to model the bar and a small region of the tabs at the two ends. The remainder of the
system, certainly the vast majority of the volume, is treated with finite element (FE)
analysis based on a Galerkin discretization of linear elastic theory [15]. The parameters are
the density and elastic constants chosen to match those of the MD region. This is shown in
Fig. 2.

In this Section we describe how the coupling between the FE and MD regions is done
in detail, and we give some indications of the theoretical motivation to implement the
coupling in this fashion. The idea for coupling FE and MD regions in a dynamical
simulation was introduced by Gumbsch and coworkers [16], although technical difficulties
prevented the development of their technique. Phillips and coworkers [17] also introduced a
FE/MD methodology which they have called the Quasicontinuum Technique, but it was
developed for lattice statics rather than a dynamical simulation. The methodology we
describe here is based on the ideas of Broughton, et al [18], who developed a minimal
coupling methodology for dynamical simulation that linked Stillinger-Weber silicon MD
[19] to two-dimensional linear elastic FE in order to study crack propagation. In fact, they
went further and linked the MD to an atomistic region governed by forces computed using
a tight-binding (TB) quantum-mechanical model, but we have no need for a TB region in



the systems we describe here. Concurrently with Broughton and coworkers, we developed a
technique that couples silicon [19] and quartz [20] atomistics to three-dimensional linear
elastic FE for MEMS simulation [21,22,10].

Here we reformulate the ideas used previously in the FE/MD coupling in a formalism
with a broader applicability. In particular, we present a methodology that is suitable for
coupling metallic empirical potentials, such as embedded atom (EAM) [11] or
Finnis-Sinclair [13] potentials, to a three dimensional linear elastic finite element model.
The formulation of the FE/MD coupling in silicon is not immediately applicable to these
systems because of the difference in the form of the many-body interactions; however, the
silicon coupling is a special case of the coupling we present here, as is explained below.

In order to construct the concurrent multiscale model, we follow a slight generalization
of the finite element paradigm. The first step is to tessellate the system with elements
comprising a mesh. The mesh is used to discretize the displacement field in the continuum
region, such that a vector displacement variable is located at each node of the mesh. Next,
equations of motion for the nodal displacements are introduced. In the FE region these are
just the usual finite element equations of motion, the discrete analogs of the constitutive
equations that describe how the material behaves in the continuum. In the MD region they
are just the usual atomistic equations of motion that describe empirically the binding
between neighboring atoms. At the FE/MD interface, new equations of motion must be
introduced. The equations of motion also determine the range of the interactions, and once
this is set, a domain decomposition is introduced in order to map the system onto the
parallel architecture of a supercomputer. The equations of motion are a set of coupled
ordinary differential equations, essentially Newton’s equations �F = m�a, and an integrator
must be introduced to evolve the system in time. Then once the initial and boundary
conditions are enforced, the model is completely specified. Typically, we use periodic
boundary conditions on the outer FE boundary, and we take an unstrained initial
configuration with random velocities consistent with a Boltzmann distribution. The system
is evolved in time for some period with a thermostat turned on in order to bring it to
thermal equilibrium. Then typically the thermostat is turned off, and the thermalized state
is used as the initial configuration for the subsequent evolution of the system.

We now consider the steps of the construction of the model in more detail starting
with the definition of the mesh. Consider an atomistic representation of the entire system
of interest. In particular, suppose we know the equilibrium positions of all of the atoms
encompassed in the system. We choose a surface that divides the system into MD and FE
regions such that the surface is smooth and it does not pass through any of the equilibrium
atomic positions. We call this the fiducial surface. In the FE region we introduce a mesh
which is in general coarse in the far periphery and refined down to the atomic scale as it
approaches the MD region. The mesh extends past the fiducial surface as indicated in Fig.
3. In some cases it is convenient to refine the mesh such that the nodes of the mesh are in
one-to-one correspondence with the equilibrium positions of the atoms at the FE/MD
interface, but we do not assume that is the case at this point. We do position the nodes at
the equilibrium sites, but it is not necessary that every site has a node. We use a mesh
generation algorithm that we have developed that respects the underlying atomic lattice,
as explained in Ref. [23].

As stated above, the usual FE and MD equations of motion are used in the FE and
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Figure 3: The coupling between finite elements and molecular dynamics in the case of a many-
body MD potential such as the Embedded Atom Model. The clusters depict a group of atoms
within the range of the potential of a single atom. Each such cluster that crosses the fiducial
MD/FE interface enters the handshaking Hamiltonian as a whole, with an overall weight.
Similarly, each FE cell crossing the interface enters as a whole, appropriately weighted. See
the text for details of how the weights are assigned.

MD regions, respectively. It is only in the interfacial FE/MD region that new equations of
motion must be introduced. The definition of the kinetic energy is straight-forward. The
lumped mass approximation is used on the FE side of the fiducial surface, so that the mass
is effectively concentrated at the nodes of the mesh

Ekinetic =
1

2
Mij �̇ui · �̇uj (1)

=
1

2
mi �̇ui · �̇ui (2)

where Mij = miδij is the lumped mass matrix, �ui is the displacement at node i, and
repeated indices are summed over the three spatial dimensions. According to the lumped
mass approximation [15], mi is given by the density of the material times the volume of the
Voronoi cell about node i. The usual MD kinetic energy is used on the MD side of the
fiducial surface

Ekinetic =
1

2
mα

∣∣∣�̇xα

∣∣∣2 (3)

where mα and �xα are the mass and position of atom α, respectively. Note that the state of
the system is completely determined by the coordinate variables {�xα} and {�ui}, and their
conjugate momenta.



The lumped mass approximation is appropriate in the atomic limit where each node is
associated with an individual nucleus, and this is where the mass is concentrated. The
lumped mass approximation also allows explicit time integration, as in molecular dynamics,
and this permits greater uniformity throughout the simulation, a point to which we return
below. In principle, it is possible, and perhaps even appropriate, to use the full distributed
mass matrix in the FE region, but we have not explored its ramifications.

The definition of the potential energy in the interfacial region is more challenging
because of the finite range of the interactions and their many-body character. The case of
the pair potentials is the most straight-forward, so we consider it first. This prescription
has been described elsewhere [10], and it is based on the ideas Broughton, et al [18],
developed for a (100) FE/MD interface in Stillinger-Weber silicon. Basically, we use mean
forces at the interface that average the forces on the two sides. There is some ambiguity in
how the energy and the corresponding forces are apportioned among the sites, and we have
made choices that ensure the proper structural mechanics and sensible dynamics. In
particular, we optimize the elastic constants and minimize the elastic wave coefficient of
reflection, while keeping the interface as small as possible.

Let the FE contribution to the interface consists of those cells that cross the fiducial
surface. We denote the volume occupied by these cells as Ω. Then the potential energy at
the interface is given by

E
FE/MD
potential =

1

2
EFE

potential(Ω) +
1

2
EMD

potential(Ω) (4)

EFE
potential(Ω) =

∑
i,j∈Ω

1

2
�uiKij�uj (5)

EMD
potential(Ω) =

∑

(αβ)∈Ω

c(αβ) φ(�rαβ) (6)

where Kij is the stiffness matrix of linear elasticity [15] and φ(�rαβ) is the MD two-body
potential. The coefficients c(αβ) equal 1 for all bonds (αβ) that lie entirely within the
interior of the region Ω and are non-zero only for those bonds (αβ) for which both atoms α
and β are in the interfacial region, Ω. For bonds on the surface of Ω, c(αβ) is equal to the
fraction of the cylindrical angle about the line (αβ) that lies in Ω. For example, a bond
lying on the face of cell on the exterior of Ω would be weighted c(αβ) = 1/2, and a bond on
the exposed edge of a cubic cell would be weighted c(αβ) = 1/4. Thus, c(αβ) is in some sense
the fraction of bond (αβ) that lies in the interfacial region. These weightings did not
appear in Ref. [18], since no nearest-neighbor bonds lie on the surface of the two
dimensional FE/MD (100) interfacial region for silicon.

The situation is more complicated when the empirical potential includes many-body
interactions and not just pair potentials. In this case the following prescription is effective.
Suppose a cluster of atoms interact through a many-body term in the potential, and some
of the atoms are on the MD side of the fiducial interface while other are on the FE side.
This term in the energy, and the corresponding forces, is then counted with full weight in
the energy subject to the following modification. The MD potential energy is rewritten as

UMD = UMD
many−body + UMD

pair (7)



=
(
UMD

many−body − Ūpair

)
+

(
Ūpair + UMD

pair

)
(8)

= U ′
many−body + U ′

pair (9)

where we have added and subtracted the same term, a sum of pair potentials that
represents the attraction of the many-body term in a mean field approximation. Of course
this makes no difference in the interior of the MD region, and the original UMD is used
there, but at the FE/MD interface the two-body terms are treated differently than the
many-body terms, and it does make a difference. Specifically, for copper we have used the
EAM potential developed by Oh and Johnson [12] and a Morse pair potential [24].

In particular, the two-body terms are treated in the same mean-force prescription
described above. The repackaged two-body term, U ′

two−body, includes both repulsive and
attractive parts. It gives the correct lattice constant and in close-packed crystals it ensures
structural stability. Note that this decomposition has the advantage that the many-body
potential is much weaker, so the fact that it is being weighted across a broader range of
distances does not cause a problem. We have validated this approach through the interface
scattering methods described in Ref. [18] and Ref. [22] for Stillinger-Weber and pair
potentials. Note that the well-known shortcomings of pair potentials for metals are
mitigated by the greatly restricted region in which they are used.

In principle, it might be preferable to weight the many-body terms differently, e.g. by
the fraction of atoms on the MD side of the fiducial surface, so that the many-body
interactions go smoothly from full weight to zero weight across an interface with a
thickness of twice the range of the many-body potential. At this point there are many
possibilities that we have yet to explore, so further optimization may be possible. In any
case, it is important to modify the interactions at the level of the potential rather than at
the level of the forces in order to ensure energy conservation and translation invariance.
Otherwise, there is some flexibility which is used to make the interface as seamless as
possible. A slightly different prescription is given in Ref. [18] for the three-body terms in
the Stillinger-Weber potential. There is no need to subtract a mean-field two-body term in
this case, and they weighted all three-body interactions crossing the fiducial surface with a
factor of one-half.

We note that there are other approaches to defining the FE/MD coupling which are
more accurate for some applications. One methodology is Coarse-Grained Molecular
Dynamics (CGMD) [22] which generalizes finite element analysis in a way that guarantees
that the equations of motion transition smoothly from those of finite elements in large cells
to those of molecular dynamics in atomic-sized cells. It also gives a natural prescription for
the random-dissipative forces due to mode suppression in the FE region [10]. This kind of
term has been shown recently to be able to prevent the pathological reflection of waves
induced by the coarse-graining process [26], at least for a system in which the periphery is
coarsened completely, and represented by a Green function.

Once the mesh and the multiscale equations of motion have been introduced, the next
step is to choose a time integrator. We have used the velocity Verlet algorithm [14] with a
typical MD time step. This integrator and time step is used throughout the simulation. In
principle it would be more efficient to use a longer time step in the peripheral FE regions
where the mesh is large. The effective Einstein frequency is smaller there, so a longer time
step is natural; however, it was found that the use of different time integrators with



different time steps in the FE and MD regions was problematic. It led to exponential
heating at the interface due to a numerical instability [16,18]. Broughton resolved this
problem by implementing a uniform time integration and time step [18]. This issue would
need to be revisited if the full distributed FE mass matrix were to be used. In that case, an
implicit integrator would be required [15].

RESULTS

Recently, several groups have published studies of dissipation in microresonators
[4-6,27]. There has been no consensus from the experimental papers on the mechanisms of
dissipation. The Roukes group has studied dissipation as a function of system size, for a
range of systems all significantly larger than the systems we can model. They have found
that the dissipation of the resonator (1/Q where Q is the quality factor) is roughly
proportional to the surface area-to-volume ratio; i.e. for small systems the dissipation
increases as the size decreases [27]. This is contrary to the original intent of the resonators
which was an attempt to reduce the dissipation by going to small sizes since the device
could be made from a single crystal. The Roukes group has also made interesting
counter-balanced torsional resonators where one torsional bar rotates one way while the
other in the opposite direction. This eliminates much of the stress at the point of
attachment of the resonator to the substrate. The Kenny group has also studied dissipation
in microresonators, and they too noted a linear dependence on the surface area-to-volume
ratio [5]. More recently, Craighead’s group at Cornell has fabricated an array of resonators
on a chip going to substantially smaller sizes, and they found the same trend [6].

Our MEMS simulations have focused on the role of atomistic phenomena in
sub-micron devices. Such effects would be missed by conventional finite elements, because
the constitutive models are developed at large length scales where more data are available.
The surface effects are negligible at these scales, so they are not included in the models.
One of the results of the multiscale modeling approach has been to produce new
constitutive equations that include atomistic effects. We have simulated micro-resonators
with various sizes, defect concentrations and temperatures, for comparison, with the
oscillating bar up to 0.2 µm in length. All of the devices have the same aspect ratio, 25:2:1,
and the same substrate geometry (see Fig. 1) . A typical configuration would consist of 1.6
million MD atoms, of which 0.5 million are in the resonating bar, together with 0.2 million
FE nodes in the periphery. The simulation of the resonator motion is conducted as follows.
The atoms are initially arranged in a single crystal lattice of silicon or stoichiometric
quartz in the desired device geometry. The system is brought to thermal equilibrium in
roughly 100,000 time steps by a velocity renormalization thermostating procedure. Then
the resonator is offset into one of its flexural normal modes of oscillation, and released.
Once released, the thermostat is decoupled, and no additional energy is put into the
system. An alternative approach that would more closely mimic the experiments would be
to drive the resonator at a variety of different external frequencies and measure the
response curve. Such an approach would be much more costly in terms of computation
time, because the motion of the system would have to be evolved until all of the transients
have died out. This can be many oscillations. The simulation of a single oscillation of a one
million atom resonator takes two weeks of supercomputer time, so it would not be possible



0.0  0.5  1.0  
Time (nanosecs)

-1.0

-0.5

0.0

0.5

1.0

A
m

pl
itu

de
 (

A
ng

st
ro

m
s)

at T=300K

Thermal Relaxation vs. Size

0.02 microns

0.14 microns

Figure 4: A comparison of the simulated oscillations of two microresonators with the same
aspect ratio: the one with the short period oscillations was 0.02 µm long while the other was
1.4 µm long. Note the marked dissipation in the smaller system. (See Ref. [21])

to conduct a meaningful simulation of a large, driven system. Instead, we have chosen to
use initial conditions based on a continuum calculation where we predict transients are
negligible. This is then verified using small systems at low temperature which have a very
harmonic response, and it would be possible to identify any transients that are present.

Various properties of the resonator have been studied, and many of the results have
been reported elsewhere [21]. Fig. 4 shows how the oscillator rings as a function of time
when plucked in flexural mode. Note that relatively large deflections of the resonator are
possible, as great as 0.2%, due to the increased compliance of the microscopic devices. The
response of the oscillator at 300K shows marked effects of anharmonicity [25]. There is a
pronounced frequency doubling effect in the smaller oscillator, and even in the first few
periods of the larger oscillator there are clear departures from a sinusoidal oscillation.

The mode mixing is most apparent in the Fourier transform of the oscillations of the
small device shown in Fig. 4. We have used a windowed Fourier transform to compute the
energy transfer from the fundamental mode into higher modes as a function of time, and fit
to exponential decay for a range of systems. The result is that the Q of the small oscillator
shown in Fig. 4 is 300 at room temperature, and the dissipation, 1/Q, is approximately
proportional to the surface area-to-volume ratio. By the end of the run a significant
amount of the first harmonic (as well as a bit of the second) has mixed into the spectrum.
This is not the case for an identical simulation run at T=10K, where only the fundamental
mode is present (not shown) [25]. Note that the room temperature behavior is in stark
contrast to the classic Fermi-Pasta-Ulam behavior characteristic of low temperature



systems that are only slightly perturbed from an integrable model [28]. Our simulations of
the resonators show appreciable relaxation at room temperature.

This behavior would not be predicted from continuum elastic theory based on
macroscopic constitutive laws. The anharmonic response has been shown to be the result
of surface effects, which are negligible at large length scales. The degradation of the
Q-value of small resonators is also due to a surface effect, not the bulk thermoelastic and
phonon-phonon processes that are important in large single crystal resonators [29]. The
reduction of Q for small resonators was observed in the early experiments on
microresonators [4,5], where it has been attributed to flawed surfaces. We have found that
show that even for initially perfect single crystal devices, atomistic effects cause a
significant degradation in Q at room temperature [21].

CONCLUSION

The multiscale simulation techniques we have developed have proven effective in the
study of a variety of systems at the sub-micron scale. In this Article we have shown how
the technique may be extended to the atomistic simulation of metals, which in general
require many-body empirical potentials. Solutions to the problems posed by the
many-body character of the potential and its relatively long-range nature (compare to
silicon where the techniques were originally developed) have been given.

We have also discussed how multiscale simulations have been used to search for new
effects arising in embedded nanomechanics. We have discussed application to sub-micron
MEMS systems, where departures from the macroscopic behavior are due to atomistic
surface effects. The important role of surface effects at the nanoscale has been noted in
many systems, and concurrent multiscale modeling offers a powerful tool to study this
seemingly anomalous behavior.
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